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Solution to Waveguide Problems by Successive
Extrapolated Relaxation

E. DELLA TORRE anp W. KINSNER

Abstract=—A successive extrapolated relaxation (SER) technique
has been developed to solve elliptic partial difference equations
iteratively. SER is more efficient than optimized successive over-
relaxation (SOR) and permits useful solutions of waveguide modes
using finite difference methods.

INTRODUCTION

Beaubien and Wexler [1], [2] have discussed the solution of wave-
guide problems by finite difference methods. The resulting method
PDSOR (positive definite successive over-relaxation) uses a one-
dimensional search technique to obtain the best value of the over-
relaxation factor. Such a technique suffers from suboptimal choice
of the over-relaxation factor during the final steps of the solution.
They cannot use the optimized SOR (successive over-relaxation) [3]
because their matrix C, although positive definite, does not possess
Young's property A {41.

A new method called SER (successive extrapolated relaxation)
[5] has been developed to solve elliptic partial difference equations.
It has been shown [5] that SER is at least as efficient as the optimized
SOR. Since SER does not require that the system matrix possess
Young's property A, it may be applied directly to the Beaubien and
Wexler formulation with a resulting increase in speed. If the prob-
lem can be reformulated so that the system matrix does possess
Young’s property A, then a refinement of SER called SEOR (suc-
cessive extrapolated optimized relaxation) may be used which
optimizes the pertinent parameter.

Tue SER MrTHOD

Let us define Vi, to be the value of the potential at the &, !
lattice point after the nth iteration. During the iterative solution, the
sequence Vi, =9, Vi, D, V3™ obtained by any successive
relaxation process may be plotted as shown in Fig. 1. If one assumes
that the approach to the asymptotic value is characterized by an
exponential behavior

V™ = Vi + (Vi — Via™)an 1)

then an approximation Ar,: to the asymptotic value is given by
Aitken’s formula

Ap® = [Vi 0]t — Vi, 2V,
L =1 — (n—2) _ )
2V Vi Via

If the sequence converges geometrically, then (2) is the solution to
the problem. If the convergence is quasi-geometric, then (2) is much
closer to the final answer than V™. In general, the convergence is
linear, and (2) has to be modified in order to assure convergence.
The first modification involves bounding the extrapolation as
illustrated in Fig. 2. The second modification is due to the fact that
(2) extrapolates the wrong way if there is an apparent divergence in
the sequence {Vii®}. This is solved by reflecting the #—2 point
as shown in Fig. 3. The resulting extrapolation formula is given by

@

Via® +2(1 +9)4s, MM >0 [ 4| < |4
Epa® = {Viy® + (34 29)81,  Mda>0 | 22] > [ 4]
Ve, AA: <0 3)
where
Ay = V@ — Vg @
Ag = Vi, ™ — Vi, 0D (5)

and v is a constant of the order of %. In SEOR, « is optimized.

ILLUSTRATIVE EXAMPLES

The dominant mode for the L-shaped region consisting of three
unit squares was solved using SER. It took 100 iterations (12.3 s) as
compared to 300 iterations (29.5 s) when using the Gauss-Seidel
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Fig, 1. The sequence Vi ;™ obtained by any successive relaxation process
indicating the implied asymptote.
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Fig. 2. Bounding the extrapolation process.
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Fig. 3. Reflection of the (# —2) point in order to obtain correct extrapolation.

method. The mesh size was £ =1/50 for a=1, and the error criterion
was the residual ratio of 104, The five-point operator was used in the
computational process. The dense mesh size used in this solution
caused the irregularities of the field distribution introduced by the
re-entrant corner of the guide to be negligible [6].

Higher order modes for circular waveguide were solved using
Wexler’'s PDSOR program [7]. The extrapolation technique was
introduced into the program and reduced the computation time by
the factor of two. The results were consistent with those obtained by
the program without extrapolation.



SHORT PAPERS

Since SEOR requires the system matrix to possess Young's
property A, one has to use a seventeen-point operator [8] in conjunc-
tion with the five-point Laplacian instead of the thirteen-point
operator as used in [7].
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Highly Stabilized IMPATT Oscillators at
Millimeter Wavelengths

S. NAGANO axp S, OHNAKA

Abstract—Highly stabilized IMPATT oscillators at millimeter
wavelengths have been developed. The IMPATT diode is mounted in
the coaxial-waveguide circuit at the detuned open position, and is
series-resonant at the design frequency. The frequency stability
and power output of +5X107%/F+20°C and 50 mW, respectively,
have been obtained at 80 GHz.

Highly stabilized solid-state oscillators at millimeter wavelengths
are presently required, especially for the realization of a phase-shift
keyed (PSK) guided millimeter-wave transmission system. Several
types of oscillators have been developed, mainly in the microwave
region [1]-[3], but also in the millimeter-wave region [4]. This short
paper describes the design considerations and the experimental
results of the reaction-cavity controlled 1MPATT oscillator having
good frequency stability in the millimeter-wave region.

The construction of the oscillator is essentially the same as the
highly stabilized Kg-band Gunn oscillator [5], but the operating
point is made more suitable for the stabilization. In the millimeter-
wave region it is difficult to obtain superior frequency stability,
because the unloaded Q of the cavity is much smaller than that of the
cavity in the microwave region (for instance, Qo at 100 GHz is about
one-third of Qo at 10 GHz, even if the cavity is ideally constructed).
This problem can be solved by utilizing a higher order resonant mode
of the cavity and also making the oscillator operate at the point where
the increment of the susceptance against frequency is maximum. In
order to realize the latter, we have placed the diode at the detuned
open position of the-cavity and also made the diode series-resonant
at the design frequency.

The equivalent circuit of the oscillator is shown in Fig. 1. The
assumptions are made that 1) the electronic susceptance of the de-
vice is negligibly smaller than that due to the junction capacity C;,
2) the diode has only a series lumped inductance L., except for the
negative conductance of the device G; and the capacitance C,, 3) the
diode is connected to the transmission line of characteristic imped-
ance Z: at the detuned open position of the reaction cavity (1—1’
in Fig. 1), and 4) the diode is also connected to the line of character-
istic impedance Z, through an ideal transformer of turns ratio »:1.
The locus of the admittance Y., which the negative conductance
sees, is shown in Fig. 2. The assumptions are made that the series-
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Fig. 1. FEquivalent circuit of stabilized iMPATT oscillatot.
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Fig. 2. Admittance locus of reaction-cavity controlled oscillator.
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Fig. 3, Tuning characteristic of an 80-GHz 1MPATT oscillator.

resonant frequency of the diode w,(=1/+/L.C;) is equal to the reso-
nant frequency of the cavity we(=1/+L,C,), and Q.(=woCoZ3)
>01(=w,L./Zs). The arrow represents the direction of the increment
of the frequency, and the cross lines equal increments of frequency.
The oscillator can be stably operated at point 4, where the increment
of the susceptance against frequency is maximum. As the admittance
locus has a “susceptance gap” (refer to Fig. 2), the single-mode
operation can be obtained in a narrow tuning range.

An 80-GHz MpATT oscillator has been designed, based on the
above design considerations. The reaction cavity is made of “super-
Invar,” whose resonant mode is the cylindrical TEn; mode. The
measured value of Qo was 11 000 (cf. theoretical value is about
16 000). In order to make the diode series-resonant at 80 GHz, a
coaxial-waveguide circuit [6] has been adopted, where the dimen-
sions of the waveguide cross section are 3.1X1.0 mm. The distance
between the diode and the detuned short position of the cavity is
3 N\,/4 at 80 GHz.

Fig. 3 shows the tuning characteristic of the oscillator. In the
frequency range from 79.2 to 80.2 GHz, the oscillator operates only




