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Solution to Waveguide Problems by Successive

Extrapolated Relaxation

E. DELLA TORRE AND W. KINSNER

Afmfract-A successive extrapolated relaxation (SER) technique
has been developed to solve elliptic partiaf difference equations
iteratively. SER is more efficient than optimized successive over-
relsxation (SOR) and permits useful solutions of waveguide modes
using finite difference methods.

INTRODUCTION

Beaubien and Wexler [1], [2] have discussed the solution of wave-

guide problems by finite difference methods. The resulting method

PDSOR (positive definite successive over-relaxation) uses a one-
dimensional search technique to obtain the best value of the over-

relaxation factor. Such a technique suffers from suboptimal choice
of the over-relaxation factor during the final steps of the solution.
They cannot use the optimized SOR (successive over-relaxation) [3 ]
because their matrix C, although positive definite, does not possess

Young’s property A [4].
A new method called SER (successive extrapolated relaxation)

[5] has been developed to solve elliptic partial difference equations.
It has been shown [5] that SER is at least as efficient as the optimized

SOR. Since SER does not require that the system matrix possess
Young’s property A, it may be applied directly to the Beaubien and

Wexler formulation with a resulting increase in speed. If the prob-
lem can be reformulated so that the system matrix does possess

Young’s property A, then a refinement of SER called SEOR (suc-

cessive extrapolated optimized relaxation) may be used which

optimizes the pertinent parameter.

THE SER METHOD

Let US Cfefine Vh,t(n) to be the value of the potential at the k, 1

lattice point after the nth iteration. During the iterative solution, the

sequence V~,Z@-g), Vk, Z(”-l), Vk, #’) obtained by any successive
relaxation process may be plotted as shown in Fig. 1. If one assumes

that the approach to the asymptotic value is characterized by an
exponential behavior

vk,t(~) = vk,2@) + (Vk,t(o) – Vk,rw (1)

then an approximation Ak, $“) to the asymptotic value is given by
Aitken’s formula

d~,l(n) =
[vk,,(*-1)]’ - vk,,(~-’)v,,,(~)

2vk,2@-1) – vb,t(~–z) — vk,2@) “
(2)

If the sequence converges geometrically, then (2) is the solution to

the problem. If the convergence is quasi-geometric, then (2) is much
closer to the final answer than V~,i(”). In general, the convergence is
linear, and (2) has to be modified in order to assure convergence.

The first modification involves bounding the extrapolation as
illustrated in Fig. 2. The second modification is due to the fact that
(2) extrapolates the wrong way if there is an apparent divergence in

the sequence { V~, @ }. This is solved by reflecting the n-2 point
as shown in Fig. 3. The resulting extrapolation formula is given by

1

Vk, $”) + 2(1 + 7)A2, A1A2>0 IA215 \A,l

17k,&+1) = Vk,Z@ + (3 + 2-/)A1, A,A, ZO IA21> IA, I

[Vh,l(n), AIA2 <0 (3)

where

Al = ~k,&l) — V~, $n-z) (4)

AZ = Vk,l(n) — V~,l(n–l) (5)

and ~ is a constant of the order of ~. In SEOR, -y is optimized.

ILLUSTRATIVE EXAMPLES

The dominant mode for the L-shaped region consisting of three
unit squares was solved using SER. It took 100 iterations (12.3 s) as

compared to 300 iterations (29.5 s) when using the Gauss–Seidel
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Fig. 1. The sequence Vk,&) obtained by any successive relaxation process
indicating the implied asymptote.
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Fig. 2. Bounding the extrapolation process.
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Fig. 3. Reflection of the (n —2) point in order to obtain correct extrapolation.

method. The mesh size was h = 1/50 for a =1, and the error criterion
was the residual ratio of 10–l. The five-point operator was used in the
computational process. The dense mesh size used in this solution

caused the irregularities of the field distribution introduced by the
re-entrant corner of the guide to be negligible [6].

Higher order modes for circular waveguide were solved using

Wexler’s PDSOR program [7]. The extrapolation technique was
introduced into the program and reduced the computation time by

the factor of two. The results were consistent with those obtained by
the program without extrapolation.
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Since SEOR requires the system matrix to possess Young’s
property A,onehas touseaseventeen-point operator [8]inconjunc-

tion with the five-point Laplacian instead of the thirteen-point

operator as used in [7].
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Highly Stabilized IMPATT Oscillators at

Millimeter Wavelengths

.5. NAGANO AND S. OHNAKA

Absfract—Highly stabilized IMPATT oscillators at mfllhneter
wavelengths have been developed. The IMPATT diode is mounted in
the coaxial-waveguide circuit at the detuned open position, and is
series-resonant at the design frequency. The frequency stability
and power output of k5X10-6/T20”C and 50 mW,, respectively,
have been obtained at 80 GHz.

Highly stabilized solid-state oscillators at millimeter wavelengths

are presently required, especially for the realization of a phase-shift
keyed (PSK) guided millimeter-wave transmission system. Several
types of oscillators have been developed, mainly in the microwave
region [l]–[3], butalso inthemillimeter-wave region [4]. This short
paper describes the design considerations and the experimental
results of the reaction-cavity controlled IMPATT oscillator having

good frequency stability in the millimeter-wave region.
The construction of the oscillator is essentially the same as the

highly stabilized Ka-band Gunn oscillator [5], but the operating

point is made more suitable for the stabilization. In the millimeter-
wave region it is difficult to obtain superior frequency stability,
because the unloaded Q of the cavity is much smaller than that of the
cavity inthe microwave region (for instance, Qoat 100GHz is about

one-thirdof QOat 10 GHz, even if thecavity is ideally constructed).
This problem can be solved by utilizing a higher order resonant mode

of the cavity and also making the oscillator operate at the point where
the increment of the susceptance against frequency is maximum. In
order to realize the latter, we have placed the diode at the detuned

open position of the-cavity and also made the diode series-resonant

at the design frequency.
The equivalent circuit of the oscillator is shown in Fig. 1. The

assumptions are made that 1) the electronic susceptance of the de-

vice is negligibly smaller than that due to the junction capacity Cj,
2) the diode hasonly a series lumped inductance,, except for the

negative conductance of thedevice G~ and the capacitance Cj, 3) the
diode is connected to the transmission line of characteristic imped-
ance Z, at the detuned open position of the reaction cavity (l–1’
in Fig, 1), and 4) the diode is also connected to the line of character-
istic impedance ZO through an ideal transformer of turns ratio n:l,
The 10CUS of the admittance Y., which the negative conductance

sees, is shown in Fig. 2. The assumptions are made that the series-
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Fig.3. Tuning characteristic ofan80-GHz lm’.4TT oscillator.

resonant frequency of the diode co,(=l/UL.@ is equal to the reso-

nant frequency of the cavity uo(=l/tiLoCo), and Q.(=ooCOZ2)

>>QI( = 0,.7-../22). The arrow represents the direction of the increment
of the frequency, and the cross lines equal increments of frequency.
The oscillator can be stably operated at point A“, where the increment

of the suseeptance against frequency is maximum. As the admittance
locus has a “susceptance gap” (refer to Fig. 2), the single-mode

operation can be obtained in a narrow tuning range.
An 80-GHZ IMPATT oscillator has been designed, based on the

above design considerations. The reaction cavity is made of “super-
1nvar, ” whose resonant mode is the cylindrical TEON mode. The
measured value of Qo was 11 000 (cf. theoretical value is about
16000). In order to make the diode series-resonant at 80 GHz, a
coaxial-waveguide circuit [6] has been adopted, where the dimen-
sions of the waveguide cross section are 3.1x1. O mm. The distance
between the diode and the detuned short position of the cavity is
3 &/4 at 80 GHz.

Fig. 3 shows the tuning characteristic of the oscillator. In the

frequency range from 79.2 to80.2GHz, theoscillator operates only


